metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.28D28, C24.65D14, (C2×C28)⋊35D4, (C23×C4)⋊1D7, (C23×C28)⋊1C2, C14.85(C4×D4), C23.38(C4×D7), C22⋊2(D14⋊C4), C14.70C22≀C2, C2.5(C28⋊7D4), C22.61(C2×D28), C14.80(C4⋊D4), (C22×C14).193D4, (C22×C4).408D14, C2.2(C24⋊D7), C7⋊4(C23.23D4), C23.83(C7⋊D4), C14.C42⋊25C2, C22.64(C4○D28), (C23×D7).24C22, C23.304(C22×D7), (C22×C28).485C22, (C22×C14).364C23, (C23×C14).100C22, C14.69(C22.D4), C2.5(C23.23D14), (C22×Dic7).67C22, (C2×C7⋊D4)⋊7C4, C2.29(C4×C7⋊D4), (C2×D14⋊C4)⋊11C2, (C2×C4)⋊15(C7⋊D4), C2.36(C2×D14⋊C4), (C2×Dic7)⋊9(C2×C4), (C22×D7)⋊5(C2×C4), (C2×C23.D7)⋊7C2, C22.150(C2×C4×D7), (C2×C14)⋊5(C22⋊C4), (C2×C14).550(C2×D4), C14.65(C2×C22⋊C4), (C22×C7⋊D4).7C2, C22.88(C2×C7⋊D4), (C2×C14).92(C4○D4), (C22×C14).100(C2×C4), (C2×C14).143(C22×C4), SmallGroup(448,747)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.28D28
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=b, f2=db=bd, ab=ba, faf-1=ac=ca, ad=da, ae=ea, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de13 >
Subgroups: 1284 in 286 conjugacy classes, 87 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, D7, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C23×C4, C22×D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C23.23D4, D14⋊C4, C23.D7, C22×Dic7, C22×Dic7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, C22×C28, C23×D7, C23×C14, C14.C42, C2×D14⋊C4, C2×C23.D7, C22×C7⋊D4, C23×C28, C23.28D28
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, D14, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4×D7, D28, C7⋊D4, C22×D7, C23.23D4, D14⋊C4, C2×C4×D7, C2×D28, C4○D28, C2×C7⋊D4, C2×D14⋊C4, C4×C7⋊D4, C23.23D14, C28⋊7D4, C24⋊D7, C23.28D28
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 105)(8 106)(9 107)(10 108)(11 109)(12 110)(13 111)(14 112)(15 85)(16 86)(17 87)(18 88)(19 89)(20 90)(21 91)(22 92)(23 93)(24 94)(25 95)(26 96)(27 97)(28 98)(29 140)(30 113)(31 114)(32 115)(33 116)(34 117)(35 118)(36 119)(37 120)(38 121)(39 122)(40 123)(41 124)(42 125)(43 126)(44 127)(45 128)(46 129)(47 130)(48 131)(49 132)(50 133)(51 134)(52 135)(53 136)(54 137)(55 138)(56 139)(57 195)(58 196)(59 169)(60 170)(61 171)(62 172)(63 173)(64 174)(65 175)(66 176)(67 177)(68 178)(69 179)(70 180)(71 181)(72 182)(73 183)(74 184)(75 185)(76 186)(77 187)(78 188)(79 189)(80 190)(81 191)(82 192)(83 193)(84 194)(141 204)(142 205)(143 206)(144 207)(145 208)(146 209)(147 210)(148 211)(149 212)(150 213)(151 214)(152 215)(153 216)(154 217)(155 218)(156 219)(157 220)(158 221)(159 222)(160 223)(161 224)(162 197)(163 198)(164 199)(165 200)(166 201)(167 202)(168 203)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 217)(2 218)(3 219)(4 220)(5 221)(6 222)(7 223)(8 224)(9 197)(10 198)(11 199)(12 200)(13 201)(14 202)(15 203)(16 204)(17 205)(18 206)(19 207)(20 208)(21 209)(22 210)(23 211)(24 212)(25 213)(26 214)(27 215)(28 216)(29 79)(30 80)(31 81)(32 82)(33 83)(34 84)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)(41 63)(42 64)(43 65)(44 66)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(85 168)(86 141)(87 142)(88 143)(89 144)(90 145)(91 146)(92 147)(93 148)(94 149)(95 150)(96 151)(97 152)(98 153)(99 154)(100 155)(101 156)(102 157)(103 158)(104 159)(105 160)(106 161)(107 162)(108 163)(109 164)(110 165)(111 166)(112 167)(113 190)(114 191)(115 192)(116 193)(117 194)(118 195)(119 196)(120 169)(121 170)(122 171)(123 172)(124 173)(125 174)(126 175)(127 176)(128 177)(129 178)(130 179)(131 180)(132 181)(133 182)(134 183)(135 184)(136 185)(137 186)(138 187)(139 188)(140 189)
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 91)(8 92)(9 93)(10 94)(11 95)(12 96)(13 97)(14 98)(15 99)(16 100)(17 101)(18 102)(19 103)(20 104)(21 105)(22 106)(23 107)(24 108)(25 109)(26 110)(27 111)(28 112)(29 175)(30 176)(31 177)(32 178)(33 179)(34 180)(35 181)(36 182)(37 183)(38 184)(39 185)(40 186)(41 187)(42 188)(43 189)(44 190)(45 191)(46 192)(47 193)(48 194)(49 195)(50 196)(51 169)(52 170)(53 171)(54 172)(55 173)(56 174)(57 132)(58 133)(59 134)(60 135)(61 136)(62 137)(63 138)(64 139)(65 140)(66 113)(67 114)(68 115)(69 116)(70 117)(71 118)(72 119)(73 120)(74 121)(75 122)(76 123)(77 124)(78 125)(79 126)(80 127)(81 128)(82 129)(83 130)(84 131)(141 218)(142 219)(143 220)(144 221)(145 222)(146 223)(147 224)(148 197)(149 198)(150 199)(151 200)(152 201)(153 202)(154 203)(155 204)(156 205)(157 206)(158 207)(159 208)(160 209)(161 210)(162 211)(163 212)(164 213)(165 214)(166 215)(167 216)(168 217)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 138 99 77)(2 76 100 137)(3 136 101 75)(4 74 102 135)(5 134 103 73)(6 72 104 133)(7 132 105 71)(8 70 106 131)(9 130 107 69)(10 68 108 129)(11 128 109 67)(12 66 110 127)(13 126 111 65)(14 64 112 125)(15 124 85 63)(16 62 86 123)(17 122 87 61)(18 60 88 121)(19 120 89 59)(20 58 90 119)(21 118 91 57)(22 84 92 117)(23 116 93 83)(24 82 94 115)(25 114 95 81)(26 80 96 113)(27 140 97 79)(28 78 98 139)(29 215 189 152)(30 151 190 214)(31 213 191 150)(32 149 192 212)(33 211 193 148)(34 147 194 210)(35 209 195 146)(36 145 196 208)(37 207 169 144)(38 143 170 206)(39 205 171 142)(40 141 172 204)(41 203 173 168)(42 167 174 202)(43 201 175 166)(44 165 176 200)(45 199 177 164)(46 163 178 198)(47 197 179 162)(48 161 180 224)(49 223 181 160)(50 159 182 222)(51 221 183 158)(52 157 184 220)(53 219 185 156)(54 155 186 218)(55 217 187 154)(56 153 188 216)
G:=sub<Sym(224)| (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,140)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,121)(39,122)(40,123)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,195)(58,196)(59,169)(60,170)(61,171)(62,172)(63,173)(64,174)(65,175)(66,176)(67,177)(68,178)(69,179)(70,180)(71,181)(72,182)(73,183)(74,184)(75,185)(76,186)(77,187)(78,188)(79,189)(80,190)(81,191)(82,192)(83,193)(84,194)(141,204)(142,205)(143,206)(144,207)(145,208)(146,209)(147,210)(148,211)(149,212)(150,213)(151,214)(152,215)(153,216)(154,217)(155,218)(156,219)(157,220)(158,221)(159,222)(160,223)(161,224)(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,217)(2,218)(3,219)(4,220)(5,221)(6,222)(7,223)(8,224)(9,197)(10,198)(11,199)(12,200)(13,201)(14,202)(15,203)(16,204)(17,205)(18,206)(19,207)(20,208)(21,209)(22,210)(23,211)(24,212)(25,213)(26,214)(27,215)(28,216)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(85,168)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155)(101,156)(102,157)(103,158)(104,159)(105,160)(106,161)(107,162)(108,163)(109,164)(110,165)(111,166)(112,167)(113,190)(114,191)(115,192)(116,193)(117,194)(118,195)(119,196)(120,169)(121,170)(122,171)(123,172)(124,173)(125,174)(126,175)(127,176)(128,177)(129,178)(130,179)(131,180)(132,181)(133,182)(134,183)(135,184)(136,185)(137,186)(138,187)(139,188)(140,189), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,169)(52,170)(53,171)(54,172)(55,173)(56,174)(57,132)(58,133)(59,134)(60,135)(61,136)(62,137)(63,138)(64,139)(65,140)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119)(73,120)(74,121)(75,122)(76,123)(77,124)(78,125)(79,126)(80,127)(81,128)(82,129)(83,130)(84,131)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,197)(149,198)(150,199)(151,200)(152,201)(153,202)(154,203)(155,204)(156,205)(157,206)(158,207)(159,208)(160,209)(161,210)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)(168,217), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,138,99,77)(2,76,100,137)(3,136,101,75)(4,74,102,135)(5,134,103,73)(6,72,104,133)(7,132,105,71)(8,70,106,131)(9,130,107,69)(10,68,108,129)(11,128,109,67)(12,66,110,127)(13,126,111,65)(14,64,112,125)(15,124,85,63)(16,62,86,123)(17,122,87,61)(18,60,88,121)(19,120,89,59)(20,58,90,119)(21,118,91,57)(22,84,92,117)(23,116,93,83)(24,82,94,115)(25,114,95,81)(26,80,96,113)(27,140,97,79)(28,78,98,139)(29,215,189,152)(30,151,190,214)(31,213,191,150)(32,149,192,212)(33,211,193,148)(34,147,194,210)(35,209,195,146)(36,145,196,208)(37,207,169,144)(38,143,170,206)(39,205,171,142)(40,141,172,204)(41,203,173,168)(42,167,174,202)(43,201,175,166)(44,165,176,200)(45,199,177,164)(46,163,178,198)(47,197,179,162)(48,161,180,224)(49,223,181,160)(50,159,182,222)(51,221,183,158)(52,157,184,220)(53,219,185,156)(54,155,186,218)(55,217,187,154)(56,153,188,216)>;
G:=Group( (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,140)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,121)(39,122)(40,123)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,195)(58,196)(59,169)(60,170)(61,171)(62,172)(63,173)(64,174)(65,175)(66,176)(67,177)(68,178)(69,179)(70,180)(71,181)(72,182)(73,183)(74,184)(75,185)(76,186)(77,187)(78,188)(79,189)(80,190)(81,191)(82,192)(83,193)(84,194)(141,204)(142,205)(143,206)(144,207)(145,208)(146,209)(147,210)(148,211)(149,212)(150,213)(151,214)(152,215)(153,216)(154,217)(155,218)(156,219)(157,220)(158,221)(159,222)(160,223)(161,224)(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,217)(2,218)(3,219)(4,220)(5,221)(6,222)(7,223)(8,224)(9,197)(10,198)(11,199)(12,200)(13,201)(14,202)(15,203)(16,204)(17,205)(18,206)(19,207)(20,208)(21,209)(22,210)(23,211)(24,212)(25,213)(26,214)(27,215)(28,216)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(85,168)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155)(101,156)(102,157)(103,158)(104,159)(105,160)(106,161)(107,162)(108,163)(109,164)(110,165)(111,166)(112,167)(113,190)(114,191)(115,192)(116,193)(117,194)(118,195)(119,196)(120,169)(121,170)(122,171)(123,172)(124,173)(125,174)(126,175)(127,176)(128,177)(129,178)(130,179)(131,180)(132,181)(133,182)(134,183)(135,184)(136,185)(137,186)(138,187)(139,188)(140,189), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,169)(52,170)(53,171)(54,172)(55,173)(56,174)(57,132)(58,133)(59,134)(60,135)(61,136)(62,137)(63,138)(64,139)(65,140)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119)(73,120)(74,121)(75,122)(76,123)(77,124)(78,125)(79,126)(80,127)(81,128)(82,129)(83,130)(84,131)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,197)(149,198)(150,199)(151,200)(152,201)(153,202)(154,203)(155,204)(156,205)(157,206)(158,207)(159,208)(160,209)(161,210)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)(168,217), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,138,99,77)(2,76,100,137)(3,136,101,75)(4,74,102,135)(5,134,103,73)(6,72,104,133)(7,132,105,71)(8,70,106,131)(9,130,107,69)(10,68,108,129)(11,128,109,67)(12,66,110,127)(13,126,111,65)(14,64,112,125)(15,124,85,63)(16,62,86,123)(17,122,87,61)(18,60,88,121)(19,120,89,59)(20,58,90,119)(21,118,91,57)(22,84,92,117)(23,116,93,83)(24,82,94,115)(25,114,95,81)(26,80,96,113)(27,140,97,79)(28,78,98,139)(29,215,189,152)(30,151,190,214)(31,213,191,150)(32,149,192,212)(33,211,193,148)(34,147,194,210)(35,209,195,146)(36,145,196,208)(37,207,169,144)(38,143,170,206)(39,205,171,142)(40,141,172,204)(41,203,173,168)(42,167,174,202)(43,201,175,166)(44,165,176,200)(45,199,177,164)(46,163,178,198)(47,197,179,162)(48,161,180,224)(49,223,181,160)(50,159,182,222)(51,221,183,158)(52,157,184,220)(53,219,185,156)(54,155,186,218)(55,217,187,154)(56,153,188,216) );
G=PermutationGroup([[(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,105),(8,106),(9,107),(10,108),(11,109),(12,110),(13,111),(14,112),(15,85),(16,86),(17,87),(18,88),(19,89),(20,90),(21,91),(22,92),(23,93),(24,94),(25,95),(26,96),(27,97),(28,98),(29,140),(30,113),(31,114),(32,115),(33,116),(34,117),(35,118),(36,119),(37,120),(38,121),(39,122),(40,123),(41,124),(42,125),(43,126),(44,127),(45,128),(46,129),(47,130),(48,131),(49,132),(50,133),(51,134),(52,135),(53,136),(54,137),(55,138),(56,139),(57,195),(58,196),(59,169),(60,170),(61,171),(62,172),(63,173),(64,174),(65,175),(66,176),(67,177),(68,178),(69,179),(70,180),(71,181),(72,182),(73,183),(74,184),(75,185),(76,186),(77,187),(78,188),(79,189),(80,190),(81,191),(82,192),(83,193),(84,194),(141,204),(142,205),(143,206),(144,207),(145,208),(146,209),(147,210),(148,211),(149,212),(150,213),(151,214),(152,215),(153,216),(154,217),(155,218),(156,219),(157,220),(158,221),(159,222),(160,223),(161,224),(162,197),(163,198),(164,199),(165,200),(166,201),(167,202),(168,203)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,217),(2,218),(3,219),(4,220),(5,221),(6,222),(7,223),(8,224),(9,197),(10,198),(11,199),(12,200),(13,201),(14,202),(15,203),(16,204),(17,205),(18,206),(19,207),(20,208),(21,209),(22,210),(23,211),(24,212),(25,213),(26,214),(27,215),(28,216),(29,79),(30,80),(31,81),(32,82),(33,83),(34,84),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62),(41,63),(42,64),(43,65),(44,66),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(85,168),(86,141),(87,142),(88,143),(89,144),(90,145),(91,146),(92,147),(93,148),(94,149),(95,150),(96,151),(97,152),(98,153),(99,154),(100,155),(101,156),(102,157),(103,158),(104,159),(105,160),(106,161),(107,162),(108,163),(109,164),(110,165),(111,166),(112,167),(113,190),(114,191),(115,192),(116,193),(117,194),(118,195),(119,196),(120,169),(121,170),(122,171),(123,172),(124,173),(125,174),(126,175),(127,176),(128,177),(129,178),(130,179),(131,180),(132,181),(133,182),(134,183),(135,184),(136,185),(137,186),(138,187),(139,188),(140,189)], [(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,91),(8,92),(9,93),(10,94),(11,95),(12,96),(13,97),(14,98),(15,99),(16,100),(17,101),(18,102),(19,103),(20,104),(21,105),(22,106),(23,107),(24,108),(25,109),(26,110),(27,111),(28,112),(29,175),(30,176),(31,177),(32,178),(33,179),(34,180),(35,181),(36,182),(37,183),(38,184),(39,185),(40,186),(41,187),(42,188),(43,189),(44,190),(45,191),(46,192),(47,193),(48,194),(49,195),(50,196),(51,169),(52,170),(53,171),(54,172),(55,173),(56,174),(57,132),(58,133),(59,134),(60,135),(61,136),(62,137),(63,138),(64,139),(65,140),(66,113),(67,114),(68,115),(69,116),(70,117),(71,118),(72,119),(73,120),(74,121),(75,122),(76,123),(77,124),(78,125),(79,126),(80,127),(81,128),(82,129),(83,130),(84,131),(141,218),(142,219),(143,220),(144,221),(145,222),(146,223),(147,224),(148,197),(149,198),(150,199),(151,200),(152,201),(153,202),(154,203),(155,204),(156,205),(157,206),(158,207),(159,208),(160,209),(161,210),(162,211),(163,212),(164,213),(165,214),(166,215),(167,216),(168,217)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,138,99,77),(2,76,100,137),(3,136,101,75),(4,74,102,135),(5,134,103,73),(6,72,104,133),(7,132,105,71),(8,70,106,131),(9,130,107,69),(10,68,108,129),(11,128,109,67),(12,66,110,127),(13,126,111,65),(14,64,112,125),(15,124,85,63),(16,62,86,123),(17,122,87,61),(18,60,88,121),(19,120,89,59),(20,58,90,119),(21,118,91,57),(22,84,92,117),(23,116,93,83),(24,82,94,115),(25,114,95,81),(26,80,96,113),(27,140,97,79),(28,78,98,139),(29,215,189,152),(30,151,190,214),(31,213,191,150),(32,149,192,212),(33,211,193,148),(34,147,194,210),(35,209,195,146),(36,145,196,208),(37,207,169,144),(38,143,170,206),(39,205,171,142),(40,141,172,204),(41,203,173,168),(42,167,174,202),(43,201,175,166),(44,165,176,200),(45,199,177,164),(46,163,178,198),(47,197,179,162),(48,161,180,224),(49,223,181,160),(50,159,182,222),(51,221,183,158),(52,157,184,220),(53,219,185,156),(54,155,186,218),(55,217,187,154),(56,153,188,216)]])
124 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | ··· | 4N | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 28 | 28 | 2 | ··· | 2 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
124 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C4×D7 | D28 | C7⋊D4 | C4○D28 |
kernel | C23.28D28 | C14.C42 | C2×D14⋊C4 | C2×C23.D7 | C22×C7⋊D4 | C23×C28 | C2×C7⋊D4 | C2×C28 | C22×C14 | C23×C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C23 | C23 | C22 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 4 | 4 | 3 | 4 | 6 | 3 | 24 | 12 | 12 | 12 | 24 |
Matrix representation of C23.28D28 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 25 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 19 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 12 |
0 | 0 | 0 | 0 | 7 | 9 |
0 | 22 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 16 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 28 |
0 | 0 | 0 | 0 | 22 | 20 |
G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,25,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[4,0,0,0,0,0,0,22,0,0,0,0,0,0,19,3,0,0,0,0,0,3,0,0,0,0,0,0,3,7,0,0,0,0,12,9],[0,4,0,0,0,0,22,0,0,0,0,0,0,0,26,3,0,0,0,0,16,3,0,0,0,0,0,0,9,22,0,0,0,0,28,20] >;
C23.28D28 in GAP, Magma, Sage, TeX
C_2^3._{28}D_{28}
% in TeX
G:=Group("C2^3.28D28");
// GroupNames label
G:=SmallGroup(448,747);
// by ID
G=gap.SmallGroup(448,747);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,758,58,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=b,f^2=d*b=b*d,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^13>;
// generators/relations